WISP2 regulates preadipocyte commitment and PPARγ activation by BMP4.
نویسندگان
چکیده
Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophic obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophic obesity and the metabolic syndrome.
منابع مشابه
Restricted Adipogenesis in Hypertrophic Obesity
The current global diabetes epidemic is driven by obesity. However, many obese individuals do not develop insulin resistance or the metabolic complications. Inappropriate expansion of the subcutaneous adipose cells leads to hypertrophic obesity characterized by a dysregulated adipose tissue with insulin resistance and inflammation. Here, we discuss the limited expandability of the subcutaneous ...
متن کاملBMP4 and BMP Antagonists Regulate Human White and Beige Adipogenesis.
The limited expandability of subcutaneous adipose tissue, due to reduced ability to recruit and differentiate new adipocytes, prevents its buffering effect in obesity and is characterized by expanded adipocytes (hypertrophic obesity). Bone morphogenetic protein-4 (BMP4) plays a key role in regulating adipogenic precursor cell commitment and differentiation. We found BMP4 to be induced and secre...
متن کاملInvolvement of peroxisome proliferator-activated receptors in the estradiol production of ovine Sertoli cells
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors of transcription factors composed of three family members: PPARα, PPARβ/δ and PPARγ. This study was aimed to evaluate the role of PPARs in the estradiol production via follicle stimulating hormone (FSH) in the ovine Sertoli cells. At the first step, transcripts of PPARα, PPARβ /δ and PPARγ were evaluated by quantitative r...
متن کاملOverexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance
WISP2 is a novel adipokine, most highly expressed in the adipose tissue and primarily in undifferentiated mesenchymal cells. As a secreted protein, it is an autocrine/paracrine activator of canonical WNT signaling and, as an intracellular protein, it helps to maintain precursor cells undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse...
متن کاملThe Immunoglobulin Superfamily Protein Differentiation of Embryonic Stem Cells 1 (Dies1) Has a Regulatory Role in Preadipocyte to Adipocyte Conversion
Differentiation of Embryonic Stem Cells 1 (Dies1) was recently identified as a novel type I immunoglobulin (IgG) domain-containing plasma membrane protein important for effective differentiation of a murine pluripotent embryonic stem cell line. In this setting, Dies1 enhances bone morphogenetic protein 4 (BMP4) signaling. Here we show Dies1 transcript expression is induced ∼225-fold during in v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 7 شماره
صفحات -
تاریخ انتشار 2013